Critical percolation on Cayley graphs of groups acting on trees
نویسنده
چکیده
This article presents a method for finding the critical probability pc for the Bernoulli bond percolation on graphs with the so called tree-like structure. Such graphs can be decomposed into a tree of pieces which have finitely many isomorphism classes. This class of graphs includes the Cayley graphs of amalgamated products, HNN extensions or general groups acting on trees. It also includes all transitive graphs with more than one end. The idea of the method is to find a multi-type Galton-Watson branching process (with a parameter p) which has finite expected population size if and only if the expected percolation cluster size is finite. This provides a sufficient information about pc. In particular if the pairwise intersections of pieces are finite, then pc is the smallest positive p for which det(M − 1) = 0, where M is the first-moment matrix of the branching process. If the pieces of the tree-like structure are finite, then pc is an algebraic number, and we give an algorithm computing pc as a root of some algebraic function. We show that any Cayley graph of a group acting on a tree with finite vertex stabilizers with respect to any finite generating set has a tree-like structure with finite pieces. In particular we show how to compute pc of the Cayley graph of a free group with respect to any finite generating set.
منابع مشابه
Percolation on Finite Cayley Graphs
In this paper, we study percolation on finite Cayley graphs. A conjecture of Benjamini says that the critical percolation pc of any vertex–transitive graph satisfying a certain diameter condition can be bounded away from one. We prove Benjamini’s conjecture for some special classes of Cayley graphs. We also establish a reduction theorem, which allows us to build Cayley graphs for large groups w...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملThe weak/strong survival transition on trees and nonamenable graphs
Various stochastic processes on nonamenable graphs and manifolds of exponential volume growth exhibit phases that do not occur in the corresponding processes on amenable graphs. Examples include: (1) branching diffusion and random walk on hyperbolic space, which for intermediate branching rates may survive globally but not locally; (2) contact processes on homogeneous trees, which likewise can ...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008